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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

This is a strong paper that I think warrants publication in Nature Communications pending major 

revisions. The paper is well positioned to provide interesting cross-level insight into BOLD signal 

correlates of ASD. I am enthusiastic about the topic, data, and approach, however I feel like the methods 

and analyses require more precision and detailed description. It should be highlighted that this paper 

stands out among the recent trend linking neuroimaging markers of clinical disorders to postmortem 

patterns of gene expression. The bulk of these studies necessarily rely on non-clinical post-mortem data 

like BrainSpan or Allen Human Brain Atlas, limiting the strength of conclusions that can be drawn. This 

paper has a unique combination of spatial coverage (n=11 brain regions) and clinical sampling (ASD vs 

controls) in the RNAseq data. The choice of fALFF and ReHo as clinical phenotypes are also sensible 

given prior ASD literature and the topic is of interest and importance to the field. Although I like this 

paper, I think the neuroimaging analyses omit key preprocessing steps and insufficiently account for 

confounding sources of noise, like head motion. The bioinformatics also sometimes trade breadth for 

depth. I commend the authors for this nice cross-level work though and acknowledge the difficulty 

inherent to linking disparate data types. My comments are meant to be constructive and point out parts 

of the methods that require clarification or potential changes. 

 

 

Side note to authors: I would love to see this analysis done using structural data – the case/control 

effect sizes for thickness and volume are not bad in ASD 

(https://doi.org/10.1176/appi.ajp.2017.17010100) and structural data avoids many pitfalls inherent to 

clinical functional neuroimaging (treat this statement about as an enthusiasm for future work, not a 

request for inclusion of structural data in this paper). 

 

Comments: 

1. The last paragraph of the introduction reads like a results section. It would strengthen the paper to 

instead discuss broader questions about why the work is important and which gaps in the literature are 

being filled. 

 

2. The neuroimaging analyses diverge from field norms and need to more explicitly address the potential 

influence of head motion, which is one of the most important sources of confounding for functional 

imaging studies of autism. 

 

a. Sensitivity analyses are required to test for the effects of head motion. Did ASD/CTL groups differ in 

terms of DVARS and avg frame-wise displacement (FWD)? Do the results hold up if only low-motion ASD 

subjects are analyzed? This is particularly important since head motion can induce structure functional 

artifacts that appear as gradients. Last, T1 SNR, rfMRI SNR, and avg DVARS+FWD should be likely be 

covaried in the analyses. 

 

b. There is no mention of how time series were residualized for head motion parameters 

(X/Y/Z/pitch/roll/yaw + their derivatives). This is a huge issue and analyses must be rerun if this step was 



omitted. 

 

c. BOLD timeseries were residualized for global signal, but why wasn’t the average signal from white 

matter and ventricles included as well? 

 

d. Similar to above, were DVARS and FWD outliers censored? This is a recommended preprocessing step. 

See this nice breakdown about why this is important, and how to order 

censoring/interpolation/bandpass steps done in the correct order, as in Power 2014; 

10.1016/j.neuroimage.2013.08.048 

(https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/preprocessing/CBIG_fMRI_Prep

roc2016/Recommendation_of_bandpass_censoring.md) 

 

e. The authors define average fALFF/ReHo maps in ASD and CTL groups (from residualized site-binned 

data). The spatial configuration of these maps were then correlated to the gene expression Would it be 

more straightforward to conduct a linear mixed effects (LME) model to explicitly identify ASD/CTL group 

differences and conduct a single correlation test between gene expression and the fMRI group 

difference map? (Brodman area Cohen’s d or equivalent). Alternatively, instead of an LME approach, the 

authors could meta-analyze imaging data from each site, similar to how the ENIGMA consortium 

analyses site data. Currently, I have a good sense for how fALFF/ReHo differs between ASDs and 

neurotypical individuals. 

 

f. I think visual brain plots of fALFF/ReHo in ASD and CTLs would go a long way. Also moving Supp Fig. 3b 

to main results. The most useful plot though would show statistical differences in ReHo/fALFF between 

ASDs and CTLs. 

 

g. What was the basis for determining image artifacts and MNI registration failure? 

 

h. Given the heterogeneity in scan acquisitions, I’m a bit worried about the lack of detail about 

important analysis steps that would cause quite a headache to get correct across sites. Were initial EPI 

frames censored from BOLD runs to allow for field stabilization? Was slice time-correction conducted 

and are the authors confident that the slice interleaving was correctly specified? 

 

i. There is also no mention of censoring subjects based on overall head motion. For instance, it’s 

common to remove subjects based on a sensible motion threshold, like average FWD > 0.30mm or 

greater than 50% of frames being censored. 

 

j. The authors should report T1 and rest run acquisition parameters (possible in supplemental table). 

This information should be summarized a bit in the methods however to give the reader a sense of how 

variable were sites in terms of scanner, head coils, scan length, scan resolution, etc? 

 

k. Was there a uniform instruction for subjects to keep eyes open or closed during REST runs? This 

influences fALFF and is important given the highlighted effects in visual cortex. Given differences in ASD 

visual processing, groups could differ in terms of eyes open/closed. I’m not expecting a thorough answer 

to this since ABIDE is a collaborative open dataset, but I think it should be acknowleged. 



 

 

3. Might help with readability to assign descriptive labels to brodmann areas. E.g. “BA20_37” becomes 

“BA20_37 (Ventral Temporal)”. 

 

4. The authors might find the dataset from Krienen et al 2020 of use for future work 

(https://www.nature.com/articles/s41586-020-2781-z.pdf?origin=ppub). 

 

5. More information is required upfront in the “Differentially correlated genes have specific 

developmental trajectories” section. Which dataset was analyzed (BrainVar/Brainspan?) dev dataset 

was analyzed, this section. How was between subject’s normalization conducted (e.g. TMM in DESeq)? 

Were low-expressed genes removed? Details like this should be included. 

 

6. Related to the above point, individual data points should be plotted for Figure 3A. There is usually 

heterogeneous sampling across the age range that readers should be oriented toward. 

 

7. The bubble charts in Figure 3b are tough to read. Were there only three enrichment terms for 

adult/earlydev/stable gene bins? Also the lines from each circle were confusing. I wasn’t sure if they 

were a feature of the data plot or if they were linking the circles to a corresponding label. I realized it’s 

the latter, but I would make this uniform and add lines between each dot and each to make it less 

confusing. 

 

8. Fig 2c is unclear to me. What variance is being explained? What does each dot represent? 

 

9. The authors highlight PVALB gene gradients, which is consistent with the literature. But it is 

increasingly acknowledged that the PVALB posterior-to-anterior expression pattern is non-specific and 

part of a larger gene gradient that includes markers of other cell types. How does the fALFF/PVALB 

correlation compare to that of first and second principle components of gene expression? 

 

10. The potential neurovascular components of fALFF and BOLD signal amplitude should be discussed 

 

11. Was the linear and nonlinear transform to MNI space combined and conducted as a single step to 

reduce distortion? 

 

12. Apologize if I’m being dense, but I can’t find Table 1. 

 

13. Any differences in frozen or fresh tissue in the differential expression data? There is also no 

information about how RNAseq data were processed (e.g. STAR? RSEM?) or which genome assembly 

was used. 

 

14. For functional enrichment analyses, what was the background set? 

 

15. Very little information about the protein-protein interaction analysis. What is a string score? How 

should the data be interpreted? 



 

16. There is also almost no information about the deconvolution analyses. This is a very tricky analysis to 

pull off and depends heavily on the granularity of single-cell cell grouping. Collinearity can be a big issue, 

for instance, if you try to deconvolve highly similar neuronal classes. 

 

17. There is also little info on the single-cell data or analyses. 

 

 

Minor comments: 

1. “We collected the ABIDE data”, should likely say “we accessed publicly available ABIDE data” 

 

2. Spacing formatting of picard covariate list. 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

This study reports gene-brain activity links that are disrupted in individuals with autism. A subset of 

genes (enriched in voltage-gated ion channels and inhibitory neurons) showed differential 

developmental trajectories in autism. Primary visual cortex was found to be the most affected brain 

region in autism. Overall, there is no clear rationale for any of the analytic decisions made, making the 

contribution of these findings to the autism literature quite limited. 

 

The motivation for the study is not clear from the introduction. There is not enough background 

describing the potential mechanisms whereby gene expression influences the development and 

maintenance of resting state functional brain networks. 

 

On page 2 the authors write “We computed two extensively validation measures of brain activation…” 

fALFF is not a measure of brain activation. It is derived from resting-state fMRI data, where participants 

are not instructed to perform a cognitive task. Similarly, ReHo is not a measure of brain activation, but 

rather of functional connectivity. 

 

There is no rationale for why fALFF and ReHo data were analyzed, rather than other functional 

connectivity metrics commonly used in the resting state fMRI, network neuroscience, and connectomics 

literatures. Further, there is no theoretical basis for the assumption that there should be convergence 

between fALFF and ReHo. 

 

There is not enough information provided regarding the resting state fMRI data analysis. Basic analytic 

decisions (eg. what were the head motion criteria/cutoffs) are not included. 

 

Resting state fMRI and gene expression data were not available from the same subjects, limiting the 

interpretability of the presented results. 

 



 

 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

This manuscript is a detailed study integrating single cell gene expression data sets from neurotypical 

control and autistic patients (AUD) with regionally matched brain activity measurements obtained from 

fMRI datasets. The authors identify genes linked with brain activity that is disrupted in AUD patients. 

The gene sets are found to be enriched in voltage-gated ion channels and inhibitory neurons. An 

interesting result is that of the regions profiled primary visual cortex is seen to be the most affected 

region in AUD patients. The use of control and patient specific transcripome profiles is unique in this 

study and is an important strength. 

 

This work represents continued investigation in determining molecular correlates of functional imaging 

results, studies that have been of interest to the neuroimaging community for some time and with 

increased feasibility as brain wide deeper profiled molecular data sets have become available. The 

problem is important but challenging for several reasons including small effect sizes and highly 

correlated gene sets. This study has some of the same challenges but the approach and methods in the 

study are sound and well analyzed comparing disparate data sets. The authors have taken a reasonably 

comprehensive approach to setting up the problem and analysis. Some comments for consideration are: 

 

1. Regions exhibiting significance differences in fALFF and ReHO are seen to be significant at a fairly 

weak level (p <0.05). Can one be more specific about the distribution of these effects, perhaps even with 

exemplars compared across regions profiled? 

2. There are a very small number of genes found intersecting with previous studies such as Ricardi et al, 

and these are well known genes implicated with a variety of functions, e.g. PVALB, SCN1B, SYT2. How do 

the authors understand this limited intersection? 

3. In examining the relationship to development, it would be interesting to compare with the BrainSpan 

(www.brainspan.org) dataset which, although I believe is not single cell, contains a reasonably wide 

developmental trajectory and might provide insights connecting this work with previous studies. 

4. The differential correlation concept comparing control versus AUD is a strength of this study, and Fig 

2. Illustrates the concept. It would be helpful to have some of the distribution properties of the 

associations found brought forward more transparently, perhaps a figure with ranking of genes by effect 

size. 

5. The ontological and protein association studies should be perhaps controlled with respect to 

background, at least for comparable brain function datasets. Generally network presentations such as 

those of Fig 3c are not particularly revealing unless substantiated with further evidence 

 

 

 

 



We would like to thank the editor and reviewers for their thoughtful critiques of our manuscript. We have 
completely redone all of our analyses and believe that we were able to address all comments. 
 
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
This is a strong paper that I think warrants publication in Nature Communications pending major revisions. The 
paper is well positioned to provide interesting cross-level insight into BOLD signal correlates of ASD. I am 
enthusiastic about the topic, data, and approach, however I feel like the methods and analyses require more 
precision and detailed description. It should be highlighted that this paper stands out among the recent trend 
linking neuroimaging markers of clinical disorders to postmortem patterns of gene expression. The bulk of these 
studies necessarily rely on non-clinical post-mortem data like BrainSpan or Allen Human Brain Atlas, limiting the 
strength of conclusions that can be drawn. This paper has a unique combination of spatial coverage (n=11 brain 
regions) and clinical sampling (ASD vs controls) in the RNAseq data. The choice of fALFF and ReHo as clinical 
phenotypes are also sensible given prior ASD literature and the topic is of interest and importance to the field.  
Although I like this paper, I think the neuroimaging analyses omit key preprocessing steps and insufficiently 
account for confounding sources of noise, like head motion. The bioinformatics also sometimes trade breadth 
for depth. I commend the authors for this nice cross-level work though and acknowledge the difficulty inherent 
to linking disparate data types. My comments are meant to be constructive and point out parts of the methods 
that require clarification or potential changes.  
 
Side note to authors: I would love to see this analysis done using structural data – the case/control effect sizes 
for thickness and volume are not bad in ASD (https://doi.org/10.1176/appi.ajp.2017.17010100) and structural 
data avoids many pitfalls inherent to clinical functional neuroimaging (treat this statement about as an 
enthusiasm for future work, not a request for inclusion of structural data in this paper). 
 
We thank the reviewer for this positive feedback. We now amended the manuscript to answer all the concerns. 
 
Comments:  
1. The last paragraph of the introduction reads like a results section. It would strengthen the paper to instead 
discuss broader questions about why the work is important and which gaps in the literature are being filled. 
 
Thank you for this suggestion. We have now substantially expanded the introduction.  
 
2. The neuroimaging analyses diverge from field norms and need to more explicitly address the potential 
influence of head motion, which is one of the most important sources of confounding for functional imaging 
studies of autism.  
 
We had previously addressed head motion but did not provide sufficient detail. In the revised manuscript, we 
now explicitly address head motion with additional details in the Methods: 
 
“For subjects with multiple fMRI scans, the scan with the lowest head motion, measured by mean framewise 
displacement (FWD), is selected for analysis. For each resulting subject scan, a subject is excluded if their scan 
has excessive head motion. Specifically, scans meeting at least one of these 3 requirements are removed: (1) 
mean FWD > 0.30mm, (2) greater than 50% of frames being scrubbed, or (3) scans with outlier mean, 1st, 2nd, 
or 3rd quantile DVARS values. DVARS is defined as the root mean square of the temporal change of the fMRI 
voxel-wise signal at each time point82,83. The package CPAC v1.8.0 is used for fMRI pre-processing including 
head motion correction, scrubbing, and nuisance regression.”  
 
 
a. Sensitivity analyses are required to test for the effects of head motion. Did ASD/CTL groups differ in terms of 
DVARS and avg frame-wise displacement (FWD)? Do the results hold up if only low-motion ASD subjects are 
analyzed? This is particularly important since head motion can induce structure functional artifacts that appear 
as gradients. Last, T1 SNR, rfMRI SNR, and avg DVARS+FWD should be likely be covaried in the analyses. 
 



We rigorously culled subjects with excessive head motion (as detailed in section “fMRI preprocessing”) in order 
to minimize potential for motion to influence our findings. The results of our analysis therefore apply when the 
low motion ASD subjects are analyzed.  
 
FWD is explicitly regressed out and we exclude subjects with excessive FWD. We exclude subjects with high 
(excessive) DVARS, which minimizes variation in DVARS.  We regress out the global signal in rsfMRI. 
Regressing out T1 SNR, rsfMRI SNR are currently non-standard approaches and we did not apply them for 
several reasons. First, there is a lack of consensus in the community as evidenced by three of the most widely 
used preprocessing pipelines [1,2,3] not providing such covariate regression. Second, the standard 
preprocessed ABIDE public dataset [4] does not apply them. Finally, we note that T1 is a separately acquired 
MRI contrast whose covariate regression could introduce additional confounds which we wish to avoid.  
  
1. CPAC: https://fcp-indi.github.io/docs/latest/user/nuisance 
2. fMRI prep: https://fmriprep.org/en/stable/outputs.html 
3. Conn: https://web.conn-toolbox.org/fmri-methods/denoising-pipeline#h.p_m3LmQHcwakjM 
4. Preprocessed ABIDE (CPAC): http://preprocessed-connectomes-project.org/abide/cpac.html 
 
b. There is no mention of how time series were residualized for head motion parameters (X/Y/Z/pitch/roll/yaw + 
their derivatives). This is a huge issue and analyses must be rerun if this step was omitted.  
 
We addressed these issues and include this information in the Methods: 
 
“Images are processed with a generalized linear model (GLM) to regress out: 1) global signal fluctuation, 2) 
physiological noise represented by white matter and CSF fluctuation, 3) fluctuation correlated with the 6 original 
affine head motion parameters (X/Y/Z/pitch/roll/yaw), 4) their first derivatives, squares, and squared derivatives, 
and 5) noise fluctuations captured from 5 components from aCompCor80.”   
 
c. BOLD timeseries were residualized for global signal, but why wasn’t the average signal from white matter and 
ventricles included as well? 
 
We thank the reviewer for this comment. We now include signal for white matter and the CSF filled ventricles in 
our GLM, as stated in response to the previous comment (2b) above. 
 
d. Similar to above, were DVARS and FWD outliers censored? This is a recommended preprocessing step. See 
this nice breakdown about why this is important, and how to order censoring/interpolation/bandpass steps done 
in the correct order, as in Power 2014; 10.1016/j.neuroimage.2013.08.048 
(https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/preprocessing/CBIG_fMRI_Preproc2016
/Recommendation_of_bandpass_censoring.md) 
 
We thank the review for this question. We now filter based on this suggestion as stated in the methods: 
 
“Specifically, scans meeting at least one of these 3 requirements are removed: (1) mean FWD > 0.30mm, (2) 
greater than 50% of frames being scrubbed, or (3) scans with outlier mean, 1st, 2nd, or 3rd quantile DVARS 
values.” 
 
e. The authors define average fALFF/ReHo maps in ASD and CTL groups (from residualized site-binned data). 
The spatial configuration of these maps were then correlated to the gene expression Would it be more 
straightforward to conduct a linear mixed effects (LME) model to explicitly identify ASD/CTL group differences 
and conduct a single correlation test between gene expression and the fMRI group difference map? (Brodman 
area Cohen’s d or equivalent). Alternatively, instead of an LME approach, the authors could meta-analyze 
imaging data from each site, similar to how the ENIGMA consortium analyses site data. Currently, I have a good 
sense for how fALFF/ReHo differs between ASDs and neurotypical individuals. 
  
f. I think visual brain plots of fALFF/ReHo in ASD and CTLs would go a long way. Also moving Supp Fig. 3b to 
main results. The most useful plot though would show statistical differences in ReHo/fALFF between ASDs and 
CTLs.  



 
We thank the reviewer for both of these comments (e. and f.). We now included a brain visualization as figure 2 
depicting the differences between ASD and CTL in the ROI analyzed (Cohen’s d). We also included a scatter 
plot depicting the spatial correlation between Cohen’s d calculated by the two different measurements.  
 

 
 
 
Fig. 2: Imaging differences between ASD and CTL. a, Differences between ASD and CTL calculated by 
Cohen’s d (effect sizes) derived from ASD – CTL comparison for both rs-fMRI measurements across the ROIs 
analyzed. b, Scatter plot depicting the spatial correlation between Cohen’s d values of fALFF and ReHo. Each 
dot corresponds to the ROI analyzed. 
 
We amended the text to reflect these changes  
 
“We first assessed differences between cases and controls for both fALFF and ReHo (Fig. 2a). We identified 4 
ROIs with a significant difference for fALFF and 1 ROIs for ReHo (Wilcoxon Rank Sum Test, p < 0.05; 
Supplementary Fig. 2a). BA20/37 was commonly different using either measurement. Even though we observed 
small effect sizes for all the ROIs analyzed (Cohen’s d; d < 0.3) in agreement with other reports, we observed 
consistency between fALFF and ReHo (Spearman Rank Correlation, rho = 0.46; Fig. 2b). These data reflect 
subtle, yet replicable functional activity measurements linked to ASD calculated by two rs-fMRI measurements.” 
 
g. What was the basis for determining image artifacts and MNI registration failure? 
 
We removed subjects with image artifacts, high head movement, or inadequate MNI152 coregistration. 
Determination of residual physiological and motion artifacts is achieved through a combination of scrubbing, 
aCompCor, and global signal regression.  
 
We amended the Registration section on page 24 of the manuscript to clarify this: 
“Lastly subjects with poor EPInorm registration90 (discussed below) are removed. Specifically, mis-registration 
is identified through a combination of manual inspection and through the detection of scans with an outlier 
number of misaligned brain-masked voxels using the interquartile range (IQR) outlier test91.” 
 
h. Given the heterogeneity in scan acquisitions, I’m a bit worried about the lack of detail about important analysis 
steps that would cause quite a headache to get correct across sites. Were initial EPI frames censored from 
BOLD runs to allow for field stabilization? Was slice time-correction conducted and are the authors confident 
that the slice interleaving was correctly specified? 
 
We now include additional data to address slice correction: 
 
“The first 5 volumes are censored to allow for MRI scanner dynamic instability to settle. To correct for head 
movement, volume realignment was applied frame by frame, to register each volume to the mean volume with 
an affine transformation. Slice timing correction is applied to ensure volume slices align temporally.” 
 
i. There is also no mention of censoring subjects based on overall head motion. For instance, it’s common to 
remove subjects based on a sensible motion threshold, like average FWD > 0.30mm or greater than 50% of 
frames being censored.  
 



We now address this issue in Methods: 
 
“Specifically, scans meeting at least one of these 3 requirements are removed: (1) mean FWD > 0.30mm, (2) 
greater than 50% of frames being scrubbed, or (3) scans with outlier mean, 1st, 2nd, or 3rd quantile DVARS 
values.” 
 
j. The authors should report T1 and rest run acquisition parameters (possible in supplemental table). This 
information should be summarized a bit in the methods however to give the reader a sense of how variable were 
sites in terms of scanner, head coils, scan length, scan resolution, etc? 
 
We now include the table (shown below) within Supplementary table 1.  
 

ABIDE SITE scanner 
manufacturer 

head coil 
channels  

T1 scan 
resolution 
(mm) 

fMRI scan 
length 
(min:sec) 

fMRI scan 
resolution (mm) 

fMRI TR 
(ms) 

1 CALTECH Siemens 8 1.0x1.0x1.0 5:04 3.5x3.5x3.5 2000 
1 CMU Siemens 8 1.0x1.0x1.0 8:06 3.0x3.0x3.0 2000 
1 KKI Phillips 8 1.0x1.0x1.0 4:40 3.05x3.15x3 2500 
1 LEUVEN_1 Phillips 8 .975x.975x1.2 7:00 3.59x3.59x4 1667 
1 LEUVEN_2 Phillips 8 .975x.975x1.2 8:00 3.59x3.59x5 1668 
1 MAX_MUN Siemens 8 1.0x1.0x1.0 6:06 3.0x3.0x4.0 3000 
1 NYU Siemens unavailable 1.3x1.0x1.3 6:00 3.0x3.0x4.0 2000 
1 OHSU Siemens 8 1.0x1.0x1.1 3:32 3.8x3.8x3.8 2500 
1 OLIN Siemens unavailable 1.0x1.0x1.0 5:15 3.4x3.4x4.0 1500 
1 PITT Siemens unavailable 1.1x1.1x1.1 5:06 3.1x3.1x4.0 1500 
1 SBL Philips 32 1.0x1.0x1.0 7:28 2.75x2.75x2.72 2200 
1 UCLA_1 Siemens 8 1.0x1.0x1.2 6:06 3.0x3.0x4.0 3000 
1 UCLA_2 Siemens 8 1.0x1.0x1.2 6:06 3.0x3.0x4.0 3000 
1 UM_1 GE 4 1.0x1.0x1.4 10:00 3.438x3.438x3 2000 
1 UM_2 GE 4 1.0x1.0x1.4 10:00 3.438x3.438x3 2000 
1 USM Siemens 8 1.0x1.0x1.2 8:06 3.4x3.4x3.0 2000 
1 YALE Siemens 8 1.0x1.0x1.0 6:40 3.4x3.4x4.0 2000 
2 BNI_1 Philips 15 1.06x1.06x1.0

6 
6:09 3.75x3.75x4 3000 

2 EMC_1 GE 8 0.9x0.9x0.9 8:20 3.6x3.6x4.0 2000 
2 ETH_1 Philips  32 0.9x0.9x0.9 7:06 3.0x3.1x3.0 2000 
2 IU_1 Siemens 32 0.7x0.7x0.7 16:21 3.4x3.4x3.4 813 
2 KKI_1(8 ch) Philips  8 1.0x1.0x1.0 6:40 3.05x3.15x3 2500 
2 KKI_1(32 ch) Philips  32 0.95x0.95x1.0 6:40 3.05x3.15x3 2500 
2 NYU_1 Siemens 8 1.3x1.0x1.33 6:00 3.0x3.0x4.0 2000 
2 OHSU_1 Siemens 12 1.0x1.0x1.1 5:07 3.8x3.8x3.8 2500 
2 SDSU_1 GE 8 1.0x1.0x1.0 6:10 3.4375x3.4375x

3.4 
2000 

2 TCD_1 Philips 8 0.9x0.9x0.9 7:06 3.0x3.0x3.2 2000 
2 UCD_1 Siemens 32 1.0x1.0x1.0 5:06 3.5x3.5x3.5 2000 
2 UCLA_1 Siemens 12 1.0x1.0x1.2 6:06 3.0x3.0x4.0 3000 
2 USM_1 Siemens 12 1.0x1.0x1.2 8:06 3.4x3.4x3.0 2000 

 
 
k. Was there a uniform instruction for subjects to keep eyes open or closed during REST runs? This influences 
fALFF and is important given the highlighted effects in visual cortex. Given differences in ASD visual processing, 
groups could differ in terms of eyes open/closed. I’m not expecting a thorough answer to this since ABIDE is a 
collaborative open dataset, but I think it should be acknowleged. 
 



As the reviewer mentions, we are unable to sufficiently answer this due to the nature of the public dataset. We 
now include this possibility as a caveat in the discussion: 
 
“Because subjects who underwent fMRI measurements might not have had uniform instructions (or resultant 
behavioral compliance) to keep their eyes open or closed, it is possible that the visual cortex data could be 
influenced by such behavior.” 
  
3. Might help with readability to assign descriptive labels to brodmann areas. E.g. “BA20_37” becomes “BA20_37 
(Ventral Temporal)”.  
 
Thank you for this suggestion. We have now included descriptive labels when we first note the ROIs in the text. 
 
“….using Brodmann area (BA) designations: BA1/2/3/5 (somatosensory cortex), BA4/6 (premotor and primary 
motor cortex), BA7 (superior parietal gyrus), BA9 (dorsolateral prefrontal cortex), BA17 (primary visual cortex), 
BA20/37 (inferior temporal cortex), BA24 (dorsal anterior cingulate cortex), BA38 (temporal pole), BA39/40 
(inferior parietal cortex), BA41/42/22 (superior temporal gyrus), BA44/45 (inferior frontal gyrus).” 
 
4. The authors might find the dataset from Krienen et al 2020 of use for future work 
(https://www.nature.com/articles/s41586-020-2781-z.pdf?origin=ppub).  
 
We thank the reviewer for the suggestion. In future studies that include imaging data from striatum it would be 
quite interesting to investigate any potential role for primate innovations in interneurons and their potential 
contribution to gene expression patterns that underlie human brain activity and/or disease. 
 
5. More information is required upfront in the “Differentially correlated genes have specific developmental 
trajectories” section. Which dataset was analyzed (BrainVar/Brainspan?). How was between subject’s 
normalization conducted (e.g. TMM in DESeq)? Were low-expressed genes removed? Details like this should 
be included.  
 
We thank the reviewer for this comment. The dataset we utilized for rs-fMRI correlation is collected across ages 
(2-60 yrs old) for both healthy controls (CTL) and ASD patients. Therefore, we simply made use of our dataset 
to unravel the developmental patterns of DC (differentially correlated) genes both in CTL and ASD. We now state 
this more explicitly: 
 
“We leveraged the transcriptomic dataset from this study to detect whether DC genes follow a specific 
developmental trajectory in ASD compared with CTL subjects (see Methods).” 
 
We now additionally analyzed the BrainSpan dataset upon the suggestion from reviewer #3, which confirms our 
findings for the CTL group (Supplementary Figure 6c). Both datasets were normalized and log transformed. We 
then only analyzed DC genes which were not lowly expressed in either dataset. Regarding between subject 
variation, we removed effects explained by covariates for this study’s dataset as described in the methods. 
BrainSpan covariates were not removed as they were either relevant information (e.g brain region, age) or not 
documented in the original study. Given that the two different datasets agree on the developmental trajectory, 
we also do not think between subject variation contributes substantially to this analysis. 
 
6. Related to the above point, individual data points should be plotted for Figure 3A. There is usually 
heterogeneous sampling across the age range that readers should be oriented toward. 
  
The reviewer raises an important point. We used loess regression, which does smoothing that is useful for 
highlighting the overall pattern but masks the underlying heterogeneity. To be more explicit about heterogeneity 
within and across age groups, we now also split ages into groups of 5 years, created boxplots per age group 
and statistically compared the age groups (Supplementary Figure 6a). We prefer to provide the boxplots instead 
of the plots of each data point as the data points are too many and it is difficult to interpret (see Revision Fig 1 
below). 
 
 



 

 
 
Supplementary Figure 6. a, Statistical comparison of developmental trajectories. Samples were divided into 
age brackets and age brackets were compared by one-sided t-test (alternative hypothesis: greater with 
increasing age in Adult, less with increasing age in EarlyDev). Numbers on graph are p-values, y-axis indicates 
Z-scored gene expression. Note that z-score spans a larger interval compared to Figure 4a. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
7. The bubble charts in Figure 3b are tough to read. Were there only three enrichment terms for 
adult/earlydev/stable gene bins? Also the lines from each circle were confusing. I wasn’t sure if they were a 
feature of the data plot or if they were linking the circles to a corresponding label. I realized it’s the latter, but I 
would make this uniform and add lines between each dot and each to make it less confusing. 
 
We thank the reviewer for the suggestion. We updated the figure based on the new data which changed the 
format of the bubble chart. There are indeed more significantly enriched categories than we plotted in the figure 
(now Figure 4b). We plotted only a selection of top category enrichments. The full list of enrichment categories 
can now be found in Table S2. 

Revision Figure 1: Developmental trajectory overlaid on data points. Each data point 
represents an expression value of a gene for the given sample. 



 
8. Fig 2c is unclear to me. What variance is being explained? What does each dot represent?  
 
We thank the reviewer for the comment. Because this figure is no longer included in the revised manuscript, we 
removed the relevant text and figure legend.  
 
 
9. The authors highlight PVALB gene gradients, which is consistent with the literature. But it is increasingly 
acknowledged that the PVALB posterior-to-anterior expression pattern is non-specific and part of a larger gene 
gradient that includes markers of other cell types. How does the fALFF/PVALB correlation compare to that of 
first and second principle components of gene expression?  
 
We thank the reviewer for the comment. We followed the suggestion of the reviewer and analyzed the coupling 
between PC1 and PC2 of gene expression with PVALB and SCN1B gene expression.  Using a principal 
component analysis, we found a similar pattern between expression (CTL), rs-fMRI measurements, and PVALB 
and SCN1B gene expression. We now include this figure as Figure 3g and we amended the text accordingly.  
 

 
Fig. 3g: Gradient of CTL expressions (PC1), PVALB, and SCN1B gene expression. Barplot depicts correlation 
between PVALB and SCN1B gene expression with ReHo, fALFF, expression PC1 and expression PC2.  
 
10. The potential neurovascular components of fALFF and BOLD signal amplitude should be discussed  
 
Psychological noise, including neurovascular dependent noise, has been shown to confound fMRI [PMIDs 
11590638, 16488843]. However, aCompCor [PMID 17560126] is an effective strategy to help mitigate these 
effects on resting state fMRI and computation of derivatives such as fALFF. To minimize confounds from 
psychological noise in our analysis, aCompCor is included in the nuisance regression.  
 
11. Was the linear and nonlinear transform to MNI space combined and conducted as a single step to reduce 
distortion? 
 
Yes, the linear and non-linear transform were combined and conducted as a single step. The combined transform 
was applied to the derivative maps during the EPI registration to the MNI template. 
 
12. Apologize if I’m being dense, but I can’t find Table 1.  
 
We do apologize for this inconvenience. The Supplementary Table 1 is now available.  
 
13. Any differences in frozen or fresh tissue in the differential expression data? There is also no information 
about how RNAseq data were processed (e.g. STAR? RSEM?) or which genome assembly was used.  
 
We thank the reviewer for this comment. All of these data were derived from frozen post-mortem tissue. The 
data used in this project was shared with us and published in this preprint 
(https://www.biorxiv.org/content/10.1101/2020.12.17.423129v1.full). We worked closely with the Geschwind and 
Gandal groups, and we processed the data ourselves to match their preprocessing. We have now amended the 
methods text to include additional information on the preprocessing of the data:  



 
“Quality control was performed using FastQC (v.0.11.9). Reads were aligned to the human hg38 reference 
genome using STAR92 (v.2.5.2b). Picard tool was implemented to refine the quality control metrics 
(http://broadinstitute.github.io/picard/) and to calculate sequencing statistics. Gencode annotation for hg38 (v.25) 
was used for reference alignment annotation and downstream quantification. Gene level expression was 
calculated using RSEM93.” 
 
14. For functional enrichment analyses, what was the background set? 
 
We thank the reviewer for the comment. We used brain expressed genes obtained from the BrainSpan dataset 
(N = 15585). We amended the method text to reflect this information.   
 
15. Very little information about the protein-protein interaction analysis. What is a string score? How should the 
data be interpreted?  
 
We thank the reviewer for the comment. Based on this comment and that of reviewer 3, we decided to remove 
the PPI interaction from the current version of the manuscript.  
 
16. There is also almost no information about the deconvolution analyses. This is a very tricky analysis to pull 
off and depends heavily on the granularity of single-cell cell grouping. Collinearity can be a big issue, for instance, 
if you try to deconvolve highly similar neuronal classes. 
 
We thank the reviewer for the comment. We acknowledge that deconvolution may not yield robust results for 
highly similar cell types. In our case, this problem is alleviated by several details. First, we only focus on PVALB 
interneurons, which have relatively distinct profiles even among the inhibitory neuron populations 
(Supplementary Figure 6d). Second, our reference single-cell dataset is a NeuN+ enriched Smart-Seq2 dataset 
which is especially powered to detect changes among the transcriptional profiles of neurons. Third, we only 
deconvolute using a select number of genes and some of them are already enriched for specific neuronal types; 
for example, Adult cluster is highly enriched in PVALB cell type markers (Fig 4c). 
 
We also now amended the method text including additional information about the deconvolution analysis.  
 
“Deconvolution was performed by MuSiC (v0.1.1)53 in R. This method leverages transcriptomic signatures of 
cell-types considering cross-subject heterogeneity and gene expression stochasticity. Bulk RNA-seq data is 
deconvoluted to obtain proportions of cell-types in each sample. We used single-cell data that was downloaded 
from the Allen Brain Map portal (https://portal.brain-map.org/atlases-and-data/rnaseq). Published cell-type 
annotations included in the metadata were used as reference for cell-type abundance inference.” 
 
17. There is also little info on the single-cell data or analyses. 
 
We thank the reviewer for the comment. The data is publicly available in the Allen Brain Institute website and it 
has been preprocessed by them. Nevertheless, we now amended the method text including additional 
information about the single cell data analysis.  
 
 
Minor comments:  
 
1. “We collected the ABIDE data”, should likely say “we accessed publicly available ABIDE data” 
 
Thank you. We now corrected the sentence.  
 
2. Spacing formatting of picard covariate list.  
 
Thank you. We now corrected the spacing.  
 
 



Reviewer #2 (Remarks to the Author): 
 
This study reports gene-brain activity links that are disrupted in individuals with autism. A subset of genes 
(enriched in voltage-gated ion channels and inhibitory neurons) showed differential developmental trajectories 
in autism. Primary visual cortex was found to be the most affected brain region in autism. Overall, there is no 
clear rationale for any of the analytic decisions made, making the contribution of these findings to the autism 
literature quite limited.  
 
The motivation for the study is not clear from the introduction. There is not enough background describing the 
potential mechanisms whereby gene expression influences the development and maintenance of resting state 
functional brain networks.  
 
We apologize that the background was insufficient and did not clearly address our rationale and motivation. We 
have now expanded the introduction in the revised manuscript. However, we would like to note that to understand 
potential gene regulatory mechanisms, the first task is to identify reliable sets of genes that correlate with 
functional brain network measurements. This was essentially the motivation that marked the start of the brain 
imaging – genomics field which our group also pioneered (PMIDs: 26590343, 26068849). While mechanistic 
insight needs to be studied by functional experiments, there are a number of recent publications – including in 
Nature Communications – that took a similar approach to identify genes spatially correlated with resting state 
brain networks and potentially disrupted in psychiatric diseases (PMIDs: 33077750, 30482947). We believe such 
studies are important in prioritizing genes for functional studies on susceptible genes which will be low-
throughput and time expensive. 
 
On page 2 the authors write “We computed two extensively validated measures of brain activation…” fALFF is 
not a measure of brain activation. It is derived from resting-state fMRI data, where participants are not instructed 
to perform a cognitive task. Similarly, ReHo is not a measure of brain activation, but rather of functional 
connectivity. 
 
We respectfully disagree (and reviewers #1 and 3 thought our approach was sound in this regard). The brain is 
highly active when not performing a specific task. Moreover, when asked to do a specific cognitive task the entire 
brain doesn’t switch to that task, only a small part of the signal changes. 80% of the variance in a fMRI task is 
still resting state signal (PMID: 24991964, PMID: 30708106). fALFF measures the amplitude of fluctuation and 
is a measure of a subset of brain activity within the low frequency band, and that activity is vitally important 
whether at rest (daydreaming, musing) or attending to a specific task as also outlined in C-PAC documentation 
(https://fcp-indi.github.io/docs/latest/user/alff.html?highlight=falff) 
ReHo is a measure of the similarity of brain activity at a voxel to the voxels near it. As it is a derived property of 
brain activity, we technically agree with the reviewer that it is a measure of local functional connectivity, but that 
measure is itself a close derivative of the underlying brain activity. Citing the C-PAC documentation: “Regional 
Homogeneity (ReHo) is a voxel-based measure of brain activity which evaluates the similarity or synchronization 
between the time series of a given voxel and its nearest neighbors (Zang et al., 2004).”  https://fcp-
indi.github.io/docs/latest/user/reho 
 
There is no rationale for why fALFF and ReHo data were analyzed, rather than other functional connectivity 
metrics commonly used in the resting state fMRI, network neuroscience, and connectomics literatures. Further, 
there is no theoretical basis for the assumption that there should be convergence between fALFF and ReHo.  
 
We thank the reviewer for this question and acknowledge that our rationale needed more detail in the original 
submission. We selected local measures of resting state fMRI in order to match gene expression and fMRI 
measures for each brain region. We could, in principle, use functional connectivity metrics but this would derive 
information from brain regions not represented by our gene expression dataset. Therefore, we purposefully 
chose fALFF and ReHo as they are some of the only local measures of resting state fMRI. 
 
We are not unfamiliar with ReHo and fALFF. We just published their very similar results for predicting the current 
severity (diagnosis) and future severity (1,2,4 years into the future) for Parkinson’s Disease (PMID: 33730626). 
They explain similar amounts of variance in this regression challenge. This is not too unsurprising given that they 
are both local properties of rs-fMRI. 



 
We note that other studies based on the correlation of brain imaging and genomics were able to use connectivity 
metrics as they utilized the Allen Human Brain Atlas (AHBA) which includes gene expression from >200 brain 
regions (PMID: 27574314, 31004051), allowing robust sample size to run connectivity analysis between regions 
in the corresponding fMRI/MRI dataset. However, there is no psychiatric disease gene expression with similar 
spatial resolution, making disease implications of such analyses limited. In fact, the ASD gene expression 
dataset used in this study is the largest one in the field to date. 
 
There is not enough information provided regarding the resting state fMRI data analysis. Basic analytic decisions 
(eg. what were the head motion criteria/cutoffs) are not included.  
 
We agree with the reviewer –and reviewer #1 for pointing out similar concerns - and apologize that the details 
were insufficient. We now include substantially more details of our methodology in the revised manuscript. We 
also note that we used Spearman’s rank correlation between gene expression and fMRI measures. Spearman’s 
rank correlation is likely to be robust to changes that will not dramatically alter fMRI values. Thus, as expected, 
we did not find a substantive alteration in the final set of genes in this revised manuscript when we included 
additional criteria that accounts for head motion. Please see our detailed responses to Reviewer #1 about 
analytic decisions as well as the updated Methods section of the revised manuscript.   
 
 
Resting state fMRI and gene expression data were not available from the same subjects, limiting the 
interpretability of the presented results.  
 
The reviewer is right that rs-fMRI and gene expression are from different subjects. To our knowledge, this is the 
case for nearly all studies in the brain activity – genomics field, except for the unique study recently published 
by our group (PMID: 33686299) that received attention by others (PMID: 33686296). But even in that study, we 
were only able to match brain activity and gene expression in one cortical region, which was made possible by 
a necessary brain resection in patients with epilepsy. We highlight these to emphasize both the practical 
limitations of the reviewer’s request and the recognized scientific merit of studies that utilized both measures 
from different individuals. 
 
 
Reviewer #3 (Remarks to the Author): 
 
This manuscript is a detailed study integrating single cell gene expression data sets from neurotypical control 
and autistic patients (AUD) with regionally matched brain activity measurements obtained from fMRI datasets. 
The authors identify genes linked with brain activity that is disrupted in AUD patients. The gene sets are found 
to be enriched in voltage-gated ion channels and inhibitory neurons. An interesting result is that of the regions 
profiled primary visual cortex is seen to be the most affected region in AUD patients. The use of control and 
patient specific transcripome profiles is unique in this study and is an important strength. 
 
This work represents continued investigation in determining molecular correlates of functional imaging results, 
studies that have been of interest to the neuroimaging community for some time and with increased feasibility 
as brain wide deeper profiled molecular data sets have become available. The problem is important but 
challenging for several reasons including small effect sizes and highly correlated gene sets. This study has some 
of the same challenges but the approach and methods in the study are sound and well analyzed comparing 
disparate data sets. The authors have taken a reasonably comprehensive approach to setting up the problem 
and analysis.  
 
We thank the reviewer for this positive feedback. 
 
Some comments for consideration are: 
 
 
1. Regions exhibiting significance differences in fALFF and ReHO are seen to be significant at a fairly weak level 



(p <0.05). Can one be more specific about the distribution of these effects, perhaps even with exemplars 
compared across regions profiled? 
 
We assume that the reviewer is referring to the weak effect size of fMRI signal differences between CTL-ASD. 
In our new analysis, while we found 4 ROIs different using fALFF, we only found BA20/37 to be significantly 
different between CTL-ASD in both fALFF and ReHo measurements (Supplementary Fig. 2a). We would like to 
clarify that since fMRI signal did not reliably differ between CTL-ASD, we identified gene-expression correlations 
with fMRI using only CTL fMRI samples (both in the previous and new analyses). We then identified genes 
correlated differentially between CTL_RNAseq – CTL_fMRI and ASD_RNAseq – CTL_fMRI. 
 
We note that the resulting analysis yielded differentially correlated genes that were spatially altered. We highlight 
PVALB and SCN1B also in response to reviewer 1 (Fig 3g). 
 

 
Fig. 3g: Gradient of CTL expressions (PC1), PVALB, and SCN1B gene expression. Barplot depicts correlation 
between PVALB and SCN1B gene expression with ReHo, fALFF, expression PC1 and expression PC2.  
 
2. There are a very small number of genes found intersecting with previous studies such as Ricardi et al, and 
these are well known genes implicated with a variety of functions, e.g. PVALB, SCN1B, SYT2. How do the 
authors understand this limited intersection? 
 
We thank the reviewer for this comment. As highlighted in the manuscript, the small overlap might be due to 
variation in cortical regions, type of fMRI measurements, and analyses. We would like to emphasize that the 
overlap is still highly significant (p-val < 1e-10) despite these variations (Fig. 3d, Supplementary Figure 5d).  
 
3. In examining the relationship to development, it would be interesting to compare with the BrainSpan 
(www.brainspan.org) dataset which, although I believe is not single cell, contains a reasonably wide 
developmental trajectory and might provide insights connecting this work with previous studies. 
 
We thank the reviewer for this suggestion and agree with their assessment. We now included the developmental 
analysis with BrainSpan. We included the novel analysis as supplementary figure 6c and we included the 
analysis information in the methods. This analysis showed similar trajectories for developmental gene clusters. 
For example, Adult cluster showed a similar pattern of gene expression increase also observed in the CTL 
samples but not in ASD samples (Fig 4a, Supplementary Figure 6c). We note that the Stable cluster behaves 
differently using the BrainSpan dataset. We reason that the Stable cluster is likely more heterogeneous than 
Adult or EarlyDev clusters and is probably composed of various genes that do not have a common expression 
pattern. 
 
4. The differential correlation concept comparing control versus ASD is a strength of this study, and Fig 2. 
Illustrates the concept. It would be helpful to have some of the distribution properties of the associations found 
brought forward more transparently, perhaps a figure with ranking of genes by effect size. 
 
We thank the reviewer for the comment. We now include a density plot as figure 3c to show the distribution of 
the DC genes’ effect sizes. We amended the figure legend and the main text to reflect this change.  



 
We amended the text as:  
“For a P < 0.01, DC genes showed an effect size larger than 1.8, resulting in ~3% of the gene expressed in our 
data (Fig. 3c). Among the genes with highest effect size, we found FILIP1, a filamin A binding protein important 
for cortical neuron migration and dendrite morphology38-40, and GABRQ, a GABA receptor subunit highly 
expressed in von Economo neurons41,42. In addition, the effect sizes of the DC genes calculated with fALFF and 
ReHo strongly correlate (Spearman Rank Correlation, rho = 0.54, p < 2.2x10-16; Supplementary Fig. 5c) further 
confirming the reproducibility of the DC genes in two different rs-fMRI measurement.” 
 
5. The ontological and protein association studies should be perhaps controlled with respect to background, at 
least for comparable brain function datasets. Generally network presentations such as those of Fig 3c are not 
particularly revealing unless substantiated with further evidence. 
 
We thank the reviewer for pointing out this. We used brain expressed genes from Brainspan (N = 15585). We 
amended the method text to reflect this information. In the revised version, we decided to remove protein-protein 
interaction network because we agree that a) such results are challenging to interpret per Reviewer #1’s 
comment and b) further evidence could be needed to substantiate such conclusions. 
 



REVIEWER COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have done a nice job conducting additional analyses in response to previous reviewer 

comments. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The reviews and critiques of this paper were in depth and pointed out several areas for clarification 

and improvement. The authors have taken this revision very seriously and provided a substantial 

reworking of the material and new data analysis. I feel this addresses all or most of the concerns put 

forth and am comfortable with the analysis and present manuscript. 

 

 

Reviewer #4 (Remarks to the Author): 

 

Thanks for addressing previous comments. The following points remain unclear: 

 

 

2a) Thanks for elaborating further on head motion, however authors do not provide any information 

on which metric they used for computing mean framewise displacement (for example, Power or 

Jenkinson etc?) 

 

Also, usually head motion is included as an additional covariate at the second level. 

 

2b) “Images are processed with a generalized linear model (GLM) to regress out: 1) global signal 

fluctuation, 2) physiological noise represented by white matter and CSF fluctuation, 3) fluctuation 

correlated with the 6 original affine head motion parameters (X/Y/Z/pitch/roll/yaw), 4) their first 

derivatives, squares, and squared derivatives, and 5) noise fluctuations captured from 5 components 

from aCompCor80.” 

 

I am a bit confused about all these steps – each one is a nuisance regression procedure and some of 

these are combined, but I have never seen all being used at once – usually studies report one such as 

for example compcor and then global signal regression as an alternative to test robustness of results. 

Especially using CompCor AND physiological noise from WM and CSF is redundant. Can authors please 

provide rationale for all these steps other than just having clicked all boxes in C-PAC? 

 

 

Additional new comments: 

 

- Please refrain from referring to autistic individuals as ‘patients’ in order to avoid ableist language 

(https://www.liebertpub.com/doi/10.1089/aut.2020.0014) 



 

- I don’t seem to find a table with demographic information for both samples – i.e., with average 

demographic information per sample. Also, how do the different sample compare to each other on 

the demographic information (given they were compared in subsequent analyses) 

 

- The tense of language used in the methods preprocessing part switches between present and past 

tense. 

 

- Given the analyses on developmental trajectories, authors should provide a supplementary figure 

describing the age distribution in the sample, as far as I remember ABIDE is densely sampled between 

6-18 and has just very few data points above that age. 

 

 

 

 

 

 



We would like to thank reviewer #4 for their additional comments on our manuscript. We are also pleased we   
were able to address all of the concerns of Reviewers #2 and #3. 
 
Reviewer Comments: 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have done a nice job conducting additional analyses in response to previous reviewer comments. 
 
Thank you. 
 
Reviewer #3 (Remarks to the Author): 
 
The reviews and critiques of this paper were in depth and pointed out several areas for clarification and 
improvement. The authors have taken this revision very seriously and provided a substantial reworking of the 
material and new data analysis. I feel this addresses all or most of the concerns put forth and am comfortable 
with the analysis and present manuscript. 
 
Thank you. 
 
Reviewer #4 (Remarks to the Author): 
 
Thanks for addressing previous comments. The following points remain unclear: 
 
 
2a) Thanks for elaborating further on head motion, however authors do not provide any information on which 
metric they used for computing mean framewise displacement (for example, Power or Jenkinson etc?) 
 
Jenkinson Framewise displacement was used. We have now updated the methods to include this information. 
 
Also, usually head motion is included as an additional covariate at the second level. 
 
Please see response to question 2b below. 
 
2b) “Images are processed with a generalized linear model (GLM) to regress out: 1) global signal fluctuation, 2) 
physiological noise represented by white matter and CSF fluctuation, 3) fluctuation correlated with the 6 
original affine head motion parameters (X/Y/Z/pitch/roll/yaw), 4) their first derivatives, squares, and squared 
derivatives, and 5) noise fluctuations captured from 5 components from aCompCor80.”  
 
I am a bit confused about all these steps – each one is a nuisance regression procedure and some of these 
are combined, but I have never seen all being used at once – usually studies report one such as for example 
compcor and then global signal regression as an alternative to test robustness of results. Especially using 
CompCor AND physiological noise from WM and CSF is redundant. Can authors please provide rationale for 
all these steps other than just having clicked all boxes in C-PAC? 
 
We regress out all of these because we feel they are all sources of potential confounds when comparing ASD to 
CTL subjects, i.e. they may introduce artifactual correlation among ASD or CTL subjects, and thereby influence 
group differences that we may subsequently measure. To guard against that we aim to remove the potential 
confounds. For example, ASD subjects may have more difficulty keeping their head still throughout the scan 
compared to CTL subjects. Therefore, it is important to regress out head motion parameters and their variates, 
to suppress both linear and nonlinear artificial correlations. Also, we observed in our research [1, 2, 3] that no 
nuisance suppression approach is perfect, and we want to be quite confident that the differences between ASD 
and CTL subjects is real and not due to artifacts such as motion. Therefore, in certain cases we elected to use 
multiple  estimates  of  a  given  nuisance,  such  as  WM  and  CSF  physiological  nuisance,  since  the  nuisance 
regressors computed through the techniques are not identical. While this may distribute the weight given to each 
regressor, we are not focused on nuisance regressor weight, but rather on thoroughly suppressing nuisance 



artifacts from our signal (our primary goal). These are regressed out in succession beginning with HMP because 
we have found this produces the most reliable rsfMRI derived measures, which is important to us in this research. 
 
Additional new comments: 
 
- Please refrain from referring to autistic individuals as ‘patients’ in order to avoid ableist language 
(https://www.liebertpub.com/doi/10.1089/aut.2020.0014) 
 
Thank you for that suggestion. We have removed “patients” from the text. 
 
- I don’t seem to find a table with demographic information for both samples – i.e., with average demographic 
information per sample. Also, how do the different sample compare to each other on the demographic 
information (given they were compared in subsequent analyses) 
 
We have now updated Table S1 to include all demographic information. Moreover, direct comparisons of 
additional demographics (not just age) are now included in the GitHub page. 
 
- The tense of language used in the methods preprocessing part switches between present and past tense. 
 
We have carefully checked this section and corrected it as needed. 
 
- Given the analyses on developmental trajectories, authors should provide a supplementary figure describing 
the age distribution in the sample, as far as I remember ABIDE is densely sampled between 6-18 and has just 
very few data points above that age.  
 
The age information of both the ABIDE and RNA-seq contributing individuals is now clearly noted in Table S1. 
Yes, there are many individuals in the range that the reviewer notes, but there are also older individuals. We 
would also like to emphasize that we removed the variance explained by age (and other covariates) 
before we proceeded with analyzing the data to mitigate any effects of age (and other covariates) in both 
datasets. 
 
However, to directly address the reviewer’s concern, we also now show the direct comparison of ages in both 
sets of individuals for rsfMRI and RNA-seq. We now include these data in Supplementary Figure 8 as well as 
the GitHub page. 
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REVIEWERS' COMMENTS 

 

Reviewer #4 (Remarks to the Author): 

 

Thanks for addressing my comments. Still I have to point out that these are alternative nuisance 

regression procedures and doing both aCompCor and mean regression of WM and CSF are redundant 

for example. 

 

Also you did not answer whether head motion was included as a regressor in the second level analyses ( 

which is different from preprocessing). 

 

What I meant for the demographics is, it would be really helpful to get an idea of MEAN age, FIQ, sex 

distribution, mean of symptom measures (such as ADOS for example) etc to characterise the overall 

sample rather than each individual separately. Also, can you provide the information you put on 

GitHub? I cant seem to find it. I think it would also be helpful to incorpotae the sample 

differences/comparison in the main manuscript. Also, the second link in your manuscript doesn't work: 

https://github.com/DeepLearningForPrecisionHealthLab/AUTISM_rsfMRI_ProcessingConnectivityExtr 

actionAndSubjectMatching 

 

 

 

 

 

 



We would like to thank reviewer #4 for their additional comments on our manuscript.  
 
 
Reviewer #4 (Remarks to the Author): 
 
Thanks for addressing my comments. Still I have to point out that these are alternative nuisance regression 
procedures and doing both aCompCor and mean regression of WM and CSF are redundant for example.  
 
Thank you, we understand your point and do not think that redundant analyses are necessarily a bad thing, but 
rather bring additional assurance that the nuisance has been thoroughly suppressed. 
 
Also you did not answer whether head motion was included as a regressor in the second level analyses (which 
is different from preprocessing). 
 
Head motion was only included in preprocessing and fully addressed there. Since it was already addressed in 
preprocessing, we did not add it as a “regressed” covariate in secondary analysis. Several groups have 
attempted to leverage spatial heterogeneity of motion in the denoising process, e.g. through a second level 
covariate, yet these attempts have not been shown to consistently outperform other commonly used pipelines. 
This lack of improvement is most likely due to the fact that motion is highly correlated across voxels, and results 
in a drop in signal intensity across the entire brain parenchyma [Satterthwaite et al., 2013, Neuroimage, PMID: 
22926292]. Meanwhile the pipeline we used included both global signal regression (GSR) and temporal 
censoring techniques which have been shown to be effective methods for minimizing the residual relationship 
between functional connectivity and motion artifacts. Combining GSR and censoring both minimizes the 
relationship between motion and connectivity, and simultaneously allows better detection of functional 
connectivity. [Satterthwaite, 2019, Hunan Brain Mapping, PMID: 29091315] 
 
 
What I meant for the demographics is, it would be really helpful to get an idea of MEAN age, FIQ, sex 
distribution, mean of symptom measures (such as ADOS for example) etc to characterise the overall sample 
rather than each individual separately.  
 
We apologize if this was not addressed sufficiently. Individual data were provided in the updated Table S1. We 
now also provide the mean of each demographic. These results are plotted in our GitHub page: 
 
https://github.com/konopkalab/AUTISM_rsFMRI_GeneExpressionCorrelations/blob/master/rawdata/Demo_Pai
rs_Demographics.pdf 
 
https://github.com/konopkalab/AUTISM_rsFMRI_GeneExpressionCorrelations/blob/master/rawdata/Demo_Pai
rs_Demographics_Abide.pdf 
 



We also now provide each of these comparisons as updated Supplementary Figure 8. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Supplementary Figure 8. a) Pairwise comparison of demographic information containing biological and technical 
covariates for RNA-seq. In red: ASD subjects; in black: control. b) Pairwise comparison of demographic 
information containing biological and technical covariates for rs-fMRI. In red: ASD subjects; in black: control. c) 
Distribution of the age of the individuals who provided data for either RNA-seq or rs-fMRI studies. 
 
 
Also, can you provide the information you put on GitHub? I cant seem to find it. I think it would also be helpful 
to incorpotae the sample differences/comparison in the main manuscript.  
 



Again, we apologize for this. Please see above GitHub links and supplemental figure 8 above. 
 
Also, the second link in your manuscript doesn't work:  
https://github.com/DeepLearningForPrecisionHealthLab/AUTISM_rsfMRI_ProcessingConnectivityExtractionAn
dSubjectMatching 
 
We have now made this GitHub page public. 
 


